
Considering Interaction in Live Coding through a
Pragmatic Aesthetic Theory

Renick Bell*

*Tama Art University, Japan

renick@gmail.com

Abstract

Live coders can use aesthetic evaluation to improve their work. A pragmatic aesthetic theory, based on the
writings of John Dewey (one of the central philosophers of pragmatism), can be employed for such
evaluations. In this revised theory, emotional states (affects) are experienced by audience members (affectees)
as a result of experiencing a network of percepts (affectors). An affectee assigns value to an experience
according to how well it achieves the affectee's intentions. When assembling the network of affectors which
will constitute an experience, the live coder can anticipate the resulting affects and use those predictions to
attempt to improve the experience. The experience of live coding consists of a network of affectors such as the
musical output, programming languages, software libraries, and projection contents. To the extent that
affectees, including the performer as first audience member, are aware of the interaction, the interaction
method becomes an affector in that network. It can function either indirectly as a result of its influence on
other affectors or directly when perceived as a primary element of the experience. An interaction method itself
is a compound affector, consisting of various influencing aspects: usability, appearance, and so on. Audience
purposes can range from dancing to deep consideration. Performers also have various purposes, including
enjoying exploration, elucidating abstractions, or obfuscating for the creation of mystery. Examining live
coding interaction techniques and their antecedents for the affects they cause and how well they achieve the
intended ends may show potential advances available to contemporary live coders.

Keywords: live coding, aesthetics, pragmatism

1. Introduction

This paper gives a working definition of live
coding, followed by a brief history of live
coding. The next section presents a pragmatic
aesthetic theory derived from the writings of
John Dewey, and Dewey's theory of valuation
is summarized. Interaction in live coding is
then examined. The final section discusses
through a concrete example how such
interaction might be evaluated in order to
improve live coding performances.

2. Defining Live Coding

Live coding is the interactive control of
algorithmic processes through programming
activity (A. R. Brown, 2007; Collins, 2011; Ward
et al., 2004). This paper focuses on interacting

with code as a performance and does not deal
with public programming as a tutorial. Live
coding is by custom projected for an audience
to see. It also typically includes improvisation
(Collins, McLean, Rohrhuber, & Ward, 2003).
The style of music is not fixed, meaning live
coding is a performance method rather than a
genre (A. R. Brown & Sorensen, 2009).

3. Live Coding History

Sorensen writes that the first documented live
coding performance was carried out by Ron
Kuivila at STEIM in 1985 (Sorensen, 2005). The
piece, "Watersurface", was done in a
"precursor of Formula" (a programming
language developed by Anderson and Kuivila)
and involved Kuivila "writing Forth code during
the performance to start and stop processes

triggering sounds through [a Mountain
Hardware 16 channel oscillator board]" (R.
Kuivila, personal communication, Nov. 6,
2013). "[The] original performance apparently
closed with a system crash." (Kuivila et al.,
2007)

The Hub used shared data to carry out
performances from 1985 to the early 90s
(Gresham-Lancaster, 1998). Earlier (1980-82),
the League of Automatic Composers did
extended performances with programs which
were adjusted as they ran (C. Brown &
Bischoff, 2002). The degree to which such
tuning required coding is unspecified in
existing literature.

Gresham-Lancaster cites Cage and Tudor as
influences (Gresham-Lancaster, 1998). This
impact is supported by Nyman (Nyman, 1999),
who contrasts experimental music like that of
Cage, Steve Reich, and Fluxus with what he
calls the avant-garde. Nyman writes that
experimental music focuses on situations in
which processes work across a field of
possibilities to bring about unknown outcomes
(p. 3) and show the uniqueness of particular
moments (p. 8). Such music may have an
identity located outside of the final audience-
perceived auditory material (p. 9), have non-
traditional methods for dealing with time (p.
10), and force performers to use skills not
typically associated with musicianship (p. 13).
Experimental music frequently presents
performers with surprise difficulties in
performance (p. 14), resemble games (p. 16),
and give performers rules to interpret (p. 16).
Who the performers are may be ambiguous (p.
19). It may require new ways of listening (p.
20). These issues appear in live coding
frequently, such as the need for new
performance skills (A. R. Brown, 2007, p.1) and
the similarity to games (Magnusson, 2011). The
one thing that appears to separate live coding
from this experimental music tradition is that
Cage, Fluxus, and related
composer/performers seem not to have
changed the rules during performances, while
this is a central concern for live coding. Further
examination of the 20th century experimental
music tradition for hints about live coding
should be done.

Following an apparent gap in the 90s, live
coding activity increased in the first decade of
the 21st century (McLean & Others, 2010),
early examples being Julian Rohrhuber's
experiments in live coding with SuperCollider
and the duo of Alex McLean and Adrian Ward
called slub (Collins et al., 2003). In the previous
decade, live coding activity through systems
like McLean's feedback.pl, Dave Griffith's
Fluxus, and computer music languages
SuperCollider and Chuck, through to newer
systems like Extempore, Overtone, and the
author's Conductive, a growing culture and
body of work has developed.

4. A Pragmatic Aesthetic Theory

Live coding can be considered aesthetically
with a pragmatic aesthetic framework
proposed by Bell based on Dewey's "Art as
Experience", published in 1934 (Dewey, 2005).
Dewey (1859-1952) was an American
philosopher and educator and one of the
central figures of the philosophical movement
called Pragmatism, along with William James
and Charles Sanders Pierce. (Hookway, 2013)

Dewey explains pragmatism as clearly
defining an idea and seeing how it works
"within the stream of experience" to show how
"existing realities may be changed" and to
produce plans for effecting such change. In
pragmatism, "theories... become instruments"
allowing ideas to be judged valuable or not
from their consequences (Dewey, 1908).

Before summarizing this author's recent
revision, it is useful to consider the main points
of "Art as Experience". This summary is
basically taken from (Bell, 2013). Dewey calls
art "a process of doing or making" (Dewey,
2005) and an engagement with intention. An
external product is a potential art experience
depending on its audience. For Dewey it is
preferable to think of art as an experience, and
a painting or performance as a tool through
which that experience can be realized. This
leads to a "triadic relation" in which the creator
produces something for an audience which
perceives it. What the creator has produced
creates a link between the creator and the
audience, though sometimes the creator and
the audience are the same (creator as first

audience member). For Dewey, experience
also means an interaction with an environment
that is unavoidably human and creates a
feedback loop in which actions and reactions
affect one another. These experiences are
always composed of both physical and mental
aspects. Experiencing the world means
transforming it "through the human context",
and equally being transformed. A potentially
infinite number of experiences can be derived
from a single artifact or situation (Leddy,
2012). Because art is experience, it is always
temporal in nature. Dewey discards the
distinction between "fine" and "useful" art.

5. A Revised Pragmatic Aesthetic Theory

There are some problematic points to Dewey's
theory, and as a result it has been revised by
Shusterman (Shusterman, 2000) and by
McCarthy and Wright to explain interaction
with technology (McCarthy & Wright, 2004),
among others. This author presented a revision
in (Bell, 2013) and a summary in (Bell, 2013).
That summary is presented below with some
modifications.

An affect is an emotional state. An affectee
is a person experiencing affects in an
interaction with affectors. An affector is a
percept that stimulates affects in an affectee.
It can be a physical object or something
abstract. A work of art is an affector which in
some way was created, organized, or
manipulated with the intention of it being an
affector. A person involved with the creation or
arrangement of an affector is an artist.

An art experience is the experience of
affects in an affectee as the result of the
affectee's interaction with a network of
affectors, with at least one of those affectors
being a work of art. The art experience is the
experience of those affectors either
simultaneously or in sequence. Experience
involves a possibly infinite number of affectors
arrayed in a network structure in which they
influence each other and influence the affectee
either directly or indirectly. Changing the
perceived network of affectors changes the
nature of the experience.

6. Dewey's Theory of Valuation

Dewey wrote a considerable amount of
material on valuation. His theory can be
summarized as follows. The value of
something derives from how well it suits the
achievement of an individual's intentions and
the consequences of achieving those ends
through those means. The object of an
appraisal is also evaluated while considering its
consequences with respect to other intentions
held by the individual (Dewey, 1939).
Everything of value is instrumental in nature.
Every end is in turn a means for another
intention in a continuous stream of experience.
Value cannot be assigned in a disinterested
manner (Dewey, 1939). Value is assigned to an
experience according to the context of the
experience (including but not limited to the
culture it takes place in (Dewey, 1939)). Such
judgments are always in flux and susceptible to
revision based on newly obtained experience.
Valuations are instrumental for future
valuations and action (Dewey, 1922). These are
used to control the stream of an individual's
experience (Dewey, 1958).

In addition, some points can be made
related to the revised aesthetic theory above.
The value of an affector is connected to the
value of an art experience in which it is
involved. The value of an art experience is
determined by the affects experienced (Bell,
2013) and how well those affects and the other
consequences of the experience and its
affectors suit the intentions of the affectee.

7. Considering Interaction in Live Coding
with the Revised Aesthetic Theory

Applying this aesthetic theory to an
experience of live coding means:

1. analyzing the intentions held by a
performer or audience member

2. determining the network of affectors
that are present in a performance

3. examining the consequences of the
interaction with those affectors, including
resulting affects

4. determining the relationship between
those consequences, affects, and the
originally-held intentions

5. assigning value to the experience and its
affectors according to those intentions or
changing intentions

This process bears some similarity to the
technique for analysis of the experience of
technology described in (McCarthy & Wright,
2004).

8. Intentions

Live coders have expressed a broad and
diverse set of intentions (Magnusson, 2011),
though the central and common intention is
the real-time creation and presentation of
digital content (A. R. Brown, 2007), particularly
through use of algorithms (A. R. Brown &
Sorensen, 2009; Thielemann, 2013). Some
want the challenge and the chance to
improvise (Collins et al., 2003). Some desire
flexibility of expression (Blackwell & Collins,
2005; Magnusson, 2011). Some seek to do so
collaboratively (C. Brown & Bischoff, 2002;
Sorensen, 2005; Thielemann, 2013). Some aim
to communicate algorithmic content to an
audience (A. R. Brown, 2007, p. 3), making
clear for them the coder's deliberations
(McLean, Griffiths, Collins, & Wiggins, 2010;
Sorensen, 2005), as well as showing how that
activity is guided by the human operator (A. R.
Brown & Sorensen, 2009, pp. 9–10). Some
want to demonstrate virtuosity (Sorensen,
2005), interact more deeply with a computer
(A. R. Brown & Sorensen, 2009; Collins et al.,
2003), or discover new musical structures
(Sorensen, 2005). This can mean trying to
describe generative processes in efficiently (A.
R. Brown & Sorensen, 2009), either in terms of
computational power necessary or code
necessary to express an idea. The intention can
even be ironic and in opposition to the goal of
clear expression for the audience (Zmoelnig,
2012).

9. Interaction in Live Coding

An interaction method is a compound affector,
consisting of various influencing aspects like
usability, appearance, and historical position.
This comes into relation with what is being
interacted with: a programming language and
its notation, algorithmic processes, a
synthesizer, and so on.

The custom of projecting the coding
activity for the audience makes the projected
interaction one of the first affectors in the
experience of live coding. Though live coding
systems are quite personal (Magnusson, 2011),
interaction in live coding can be classified into
two superficial categories based on this visual
display: an orthodox style and idiosyncratic
styles. Though not perfectly uniform, the
orthodox style involves a text editor and an
interpreter, and it can be observed in some live
coding performances by McLean and those of
Sorensen among others. Idiosyncratic styles
may or may not involve the former, but they
can include graphics, animation, or other
interactive elements. Examples of
idiosyncratic live coding interaction styles
include some performances and systems by
Griffiths (McLean et al., 2010), Magnusson
(Magnusson, 2013), and Zmoelnig (Zmoelnig,
2012).

One example of the orthodox style of live
coding interaction is that in Alex McLean's
performances using his Haskell library Tidal. In
addition to its pattern representation and
manipulation features, it allows the use of
GHCi and Emacs to live code patterns and
trigger a synth over OSC (McLean & Wiggins,
2010).

An example of the idiosyncratic style of live
coding is Dave Griffith's Scheme Bricks, which
is a graphical environment for programming in
the Scheme language which trades the
signature parentheses of Scheme for colored
blocks. It allows the user to graphically
manipulate fragments of code in a way the
author feels differs from text editing as well as
preventing coding mistakes like mismatching
the number of parentheses (McLean et al.,
2010).

Regardless of the superficial appearance of
the live coding, many fundamental aspects are
shared. McLean makes clear one of the
challenges of interaction in live coding is the
higher level of abstraction for making sounds
in live coding compared to manipulation of a
traditional physical instrument (McLean &
Wiggins, 2010). The coder creates those many
sounds by means of algorithmic processes.
Brown characterizes those processes as
"typically limited to probabilistic choices,
structural processes and use of pre-established
sound generators." (A. R. Brown, 2007, p. 1)
Those algorithmic processes are mapped to
synthesizers. This creates some tension for the
performer, who must juggle two somewhat
dissimilar types of interaction: one with the
algorithmic processes, and another with the
synthesizer.

In order to control these algorithmic
processes, a user employees abstractions and
the notation defined to express them in a given
language. A more complete discussion of these
abstractions can be found in (Bell, 2013), but
the level of abstraction among live coders can
also vary, and there is an extreme diversity in
the notations used to express them, such as
the S-expressions employed by Sorensen and
Griffiths, SuperCollider code used by
Rohrhuber and others, and even differences in
the Haskell used by McLean and Bell. Naturally
the idiosyncratic methods mentioned
previously provide somewhat different means
for controlling these processes.

The nature of live coding when presented
with a projection emphasizes an interaction
with the audience in a way that other
electronic music does not. McLean and
Wiggins question the affects of the audience as
a result of experiencing the projection,
suggesting that some affectees may
experience alienation even while others
appreciate the opportunity to see the coder's
interaction with the system (McLean &
Wiggins, 2011). While their anecdotal evidence
says both are possible, that gathered by Brown
suggests a positive reaction to be more
common. However, he also notes that it can be
perceived as showing off or a distraction (A. R.
Brown, 2007). This partly depends on the
affectee's background (Bell, 2013). Considering

their intentions is also important: audience
purposes can range from dancing to deep
consideration. For example, overemphasis of
projected code might be a mismatch for an
affectee wanting to dance.

10. Evaluating Interaction in Live Coding

With such a diverse set of intentions and
affectees, clearly evaluating the interaction
might seem to be an impossible task. The
aesthetic theory presented says a potentially
infinite number of evaluations could be
obtained. However, remembering that the
theory is intended as a useful tool for
suggesting a plan for change, it seems
desirable to apply the system even partially.
One strategy may be to focus on one intention
at a time for one affectee. Given a particular
performance, the affectors involved can be
listed out. Such an example follows.

One of the author's recent performances
took place on Saturday, May 11 2013 at the
Linux Audio Conference in Graz, Austria in the
basement of the Forum Stadtpark (Bell, 2013).
One of the intentions of the performance was
maximizing opportunities to improvise.

At the performance, an audience of
perhaps 50 or 60 people stood in front of a low
stage. The lights were turned off when the
audio began. This performance of bass music
emphasized generative rhythms. A custom live
coding system, a programming library called
Conductive, was used to trigger a simple
sampler built with the SuperCollider
synthesizer and loaded with thousands of
audio samples. An orthodox style was used in
which prepared code was loaded into the vim
editor, edited, and sent to the Haskell
interpreter, where it was executed. Doing so,
multiple concurrent processes spawned events
and other parameters. Abstractions were used
to generate sets of rhythmic figures, which
were paired with patterns of audio samples
and other synthesis parameters. The
concurrent processes read the generated data
and used it to synthesize sound events. Such
data was generated and repeatedly chosen
from to allow improvised music making. By
watching the projected interaction, the

audience could to some extent observe the
generative processes.

In this case, the dark performance
environment made it somewhat difficult to see
the audience. As a result, some trepidation
about audience reaction (wanting to
encourage the audience to dance being
another intention) served as a limiting factor to
perceived freedom. It occupied some attention
that might have been spent otherwise had a
dancing audience been observable from the
beginning. The software library made
switching between patterns and designing
time-varying parameter changes simple, but
insufficient familiarity with the library
functions and the design of the library itself
meant there were not opportunities for
generating new rhythm patterns during the
performance. A sense of restriction resulted to
some extent.

Putting the experience to use, it seems that
productive changes might include simplifying
the generation of new rhythm patterns by
changes or additions to the library, somehow
obtaining a better view of the audience, and
practicing more. The original intention remains
an important one.

11. Conclusion

While obtaining a complete analysis for every
intention for even one affectee is a very large
task and beyond the scope of this paper, it is
hoped that this example analysis shows how
this theory can be applied. Given enough
planning and resources, it is thought that it
could be applied more comprehensively to a
larger group of affectees with the hopes of
obtaining useful evaluations that can then be
employed to improve future performances.

References

Bell, R. (2013). Pragmatic Aesthetic Evaluation
of Abstractions for Live Coding. The Japanese
Society for Sonic Arts. Retrieved from
http://www.jssa.info/doku.php?id=journal017

Bell, R. (2013). Towards Useful Aesthetic
Evaluations of Live Coding. Proceedings of the
International Computer Music Conference.

Bell, R. (2013, may). Renick Bell, live @ Linux
Audio Conference 2013, Saturday, May 11, Forum
Stadtpark, Graz, Austria. Retrieved from
http://www.youtube.com/watch?v=J5TskLgsdBU

Blackwell, A., & Collins, N. (2005). The
Programming Language as a Musical Instrument.
Proceedings of PPIG05. University of Sussex.

Brown, A. R. (2007). Code jamming. M/C: a
journal of media and culture, 9(6).

Brown, A. R., & Sorensen, A. (2009). Interacting
with Generative Music through Live Coding.
Contemporary Music Review, 28(1), 17–29.

Brown, C., & Bischoff, J. (2002). Indigenous to
the Net: early network music bands in the San
Francisco Bay area. Retrieved from
http://crossfade.walkerart.org/brownbischoff/Indig
enoustotheNetPrint.html

Collins, N. (2011). Live Coding of Consequence.
Leonardo, 44(3), 207–211.

Collins, N., McLean, A., Rohrhuber, J., & Ward,
A. (2003). Live coding in laptop performance.
Organised Sound, 8(03), 321–330.

Dewey, J. (1908). What Does Pragmatism Mean
by Practical? The Journal of Philosophy, Psychology
and Scientific Methods, 5(4), 85–99.

Dewey, J. (1922). Valuation and experimental
knowledge. The Philosophical Review, 31(4), 325–
351.

Dewey, J. (1939). Theory of valuation.
International Encyclopedia of Unified Science.

Dewey, J. (1958). Experience and nature (Vol. 1).
DoverPublications. com.

Dewey, J. (2005). Art as Experience. Perigee
Trade.

Gresham-Lancaster, S. (1998). The Aesthetics
and History of the Hub: The Effects of Changing
Technology on Network Computer Music. Leonardo
Music Journal, 8, 39.

Hookway, C. (2013). Pragmatism. In E. N. Zalta
(Ed.), The Stanford Encyclopedia of Philosophy
(Winter 2013.). Retrieved from
http://plato.stanford.edu/archives/win2013/entries/
pragmatism/

Kuivila, R., Hub, T., Rohrhuber, J., Mogini, F.,
Collins, N., Kamensky, V., … IN SAND. (2007). A
Prehistory of Live Coding. TOPLAP. Retrieved from
http://www.sussex.ac.uk/Users/nc81/toplap1.html

Leddy, T. (2012). Deweyś Aesthetics. In E. N.
Zalta (Ed.), The Stanford Encyclopedia of Philosophy
(Fall 2012.). Retrieved from
http://plato.stanford.edu/archives/fall2012/entries/
dewey-aesthetics/

Magnusson, T. (2011). Confessions of a live
coder. Proceedings of International Computer Music
Conference.

Magnusson, T. (2013). The Threnoscope.
Proceedings of the 2013 International Conference on
Software Engineering.

McLean, A., & Others. (2010). TOPLAP website.
Retrieved from
http://www.toplap.org/index.php/Main_Page

McLean, A., & Wiggins, G. (2010). Tidal–Pattern
Language for Live Coding of Music. Proceedings of
the 7th Sound and Music Computing conference.

McLean, A., & Wiggins, G. (2011). Texture: Visual
Notation for Live Coding of Pattern. Proceedings of
the International Computer Music Conference.

McLean, A., Griffiths, D., Collins, N., & Wiggins,
G. (2010). Visualisation of live code. Proceedings of
Electronic Visualisation and the Arts 2010.

Nyman, M. (1999). Experimental Music: Cage
and Beyond (Music in the Twentieth Century) (2nd
ed.). Cambridge University Press. Retrieved from
http://www.worldcat.org/isbn/0521653835

Shusterman, R. (2000). Performing live:
Aesthetic alternatives for the ends of art. Cornell
University Press.

Sorensen, A. (2005). Impromptu: An interactive
programming environment for composition and
performance. Proceedings of the Australasian
Computer Music Conference 2009.

Thielemann, H. (2013). Live music programming
in Haskell. arXiv preprint arXiv:1303.5768.

Ward, A., Rohrhuber, J., Olofsson, F., McLean,
A., Griffiths, D., Collins, N., & Alexander, A. (2004).
Live algorithm programming and a temporary
organisation for its promotion. Proceedings of the
README Software Art Conference.

Wright, P., & McCarthy, J. (2004). Technology as
experience. MIT Press.

Zmoelnig, I. M. (2012, dec). Pointillism.
Retrieved from
http://umlaeute.mur.at/Members/zmoelnig/project
s/pointillism/

